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We consider capillary displacement of immiscible fluids in porous media in the 
limit of vanishing flow rate. The motion is represented as a stepwise Monte Carlo 
process on a finite two-dimensional random lattice, where a t  each step the fluid inter- 
face moves through the lattice link where the displacing force is largest. The dis- 
placement process exhibits considerable fingering and trapping of displaced phase at  
all length scales, leading to high residual retention of the displaced phase. Many 
features of our results are well described by percolation-theory concepts. I n  particular, 
we find a residual volume fraction of displaced phase which depends strongly on the 
sample size, but weakly or not a t  all on the co-ordination number and microscopic- 
size distribution of the lattice elements. 

1. Introduction 
Fluid transport through porous structures is a widely studied topic with a number 

of applications. Within the petroleum industry, in particular, displacement processes 
involving immiscible fluids have received much recent attention a t  the microstructure 
scale, i.e. the scale of grains and pores. We have investigated such processes and 
report here on the effect of void-space topology and geometry on so-called capillary 
displacement processes - flow induced by capillary forces a t  extremely low, con- 
trolled flow rates. 

Natural porous structures consist of a completely connected solid matrix and, with 
regard to  fluid flow, a completely connected void space. This void space is often 
modelled as a hydraulic network consisting of interconnected channels of variable 
cross-section. We consider the simplest relevant model, a regular planar network of 
given co-ordination number, with pore-channel cross-sections assigned randomly from 
a given distribution, and finite volume associated with the channel intersections, or 
pore sites. Fluid displacement is modelled by cohputer simulation, using a Monte 
Carlo procedure, wherein we hope to obtain information of qualitative value without 
delving into the complicated details of interface motion in an irregular geometry. 
We find many aspects of such displacement processes to  be governed by percolation 
theory, including an important scaling law that predicts the residual fractional 
volumes of the fluids. 

Network modelling of the pore space is an active research area with a corre- 
spondingly large literature. The crudest model is that of a bundle of non-intersecting 
tubes, each of constant but different cross-section corresponding t o  some given pore- 
size distribution. This model is the basis of so-called ‘hydraulic radius’ theories used 
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to describe single-phase transport in porous media (Scheidegger 1974). More elaborabe 
models in which each tube radius is permitted axial variation have been applied to  
capillary displacement processes (Dullien 1975). Such models fail to  predict the 
salient features of capillary displacement - the known hysteresis between imbibition 
and drainage, and the retention of displaced fluid. These features require modelling 
by interconnected networks. 

Studies of displacement processes in interconnected networks are often imple- 
mented through computer simulation. Chatzis & Dullien ( 1  977) have investigated 
linear displacement in various two-dimensional networks where one fluid is assumed 
to be completely compressible. Mohanty, Davis & Scriven (1980) simulated low- 
velocity displacements of oiI by water on square networks, including a pinch-off 
process that can encourage the disconnection of the non-wetting fluid. Androutso- 
poulos & Mann (1979) simulated a mercury porosimetry experiment on a square 
network. We find that the results of such simulations are strongly affected by the 
finite size of the network, and that a careful application of percolation theory accounts 
for this behaviour. 

I n  $2, we review the physics of capillary displacement. We describe the details of 
our simple capillary displacement simulation in $ 3 .  I n  $4 we describe the steady- 
state displacement configuration and effects thereon of pore-space topology and 
geometry. Percolation theory is discussed in § 6 and applied to the problem of capillary 
displacement. A summary of results appears in $6.  After this paper was completed, 
we learned of related work by de Gennes & Guyon (1978) and Lenormand (1980). 
The latter paper simulates capillary displacement using essentially the same model 
considered here, but analyses the results somewhat differently. 

2. Physics of capillary displacement 
Our intention is to  gain insight into two-phase displacement processes in fluid- 

porous rock, under conditions where capillary forces dominate. The standard di- 
mensionless group for this process is the capillary number 

= P / Y ,  ( 1 )  

where p, v and y are respectively the viscosity, average velocity and surface-tension 
coefficient. Roughly speaking, C is the ratio of viscous to surface-tension forces, and 
capillary displacement is characterized by C < 1 .  I n  this regime the flow rate is so 
low that the motion is quasi-static, consisting of intermittent motion in only one 
element of the network a t  a time, which we may think of as the limiting case C + 0. 
We will be more explicit about the restrictions imposed by this limit a t  the end of 
this section. 

We begin by representing the porous medium as a lattice of fixed co-ordination 
number (the number of links meeting a t  a node), whose elements have variable sizes 
following some probability distribution. For example, in figure 1, we show a schematic 
two-dimensional square latt,ice, together with a possible realization as a network of 
circular pores (located on the sites or nodes) and straight throats (on the bonds or 
links). In this paper, we study two-dimensional lattices whose co-ordination number 
u is 3, 4 or 6 ,  as indicated in figure 2. As discussed in $3,  there is little variation 
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(a)  ( b )  
FIGURE 1. A two-dimensional square network : (a )  schematically and ( b )  realistically. 

(C) 

FIGURE 2. Lattices studied in this work. 
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of the results with (T, and there seems to be no need to study more values in two 
dimensions. 

The process of displacement of an incompressible fluid from the network by a second 
immiscible and incompressible fluid is hereinafter referred to  as water displacing oil. 
Consider a lattice initially filled with oil, and allow water to enter along one edge in the 
presence of capillary pressure differences across the interface. If the rock is prefer- 
entially wetted by water, then water will spontaneously be imbibed while, if the rock is 
preferentially wet by oil, we imagine applying an external pressure head across the 
lattice and then capillary pressure will provide a variable resisting force. I n  either 
case, a t  very small flood rates, there will be little pressure variation in either fluid 
phase due to viscous effects. However, the capillary pressure difference across the 
oil-water interface 

( 2 )  
Y 

Pc = jj, 

where y is the coefficient of surface tension and R the mean radius of curvature, can 
show considerable variation because R is proportional to  the local cross-sectional 
radius of the pore space, which may vary strongly from point to  point. The individual 
menisci in any pore or throat are then subjected to  forces whose magnitude may vary 
dramatically along the interface, and the interface will move in a very irregular 
fashion with strong local variation in velocity and in almost-discrete steps correspond- 
ing to  motion through individual lattice elements. We are then led to simulate the 
interface motion as a discrete, stepwise process, where in each step the oil-water 
interface moves through exactly one element of the lattice, where the chosen element 
has a lowest ranking along the interface. 

The connection between the rankings and the geometry of the pore space is as 
follows. We assign a ranking to the lattice throats (links) alone, reasoning that the 
pores (nodes) are much larger and have much smaller values of p c  than the throats, 
and the interesting variation in p c  then occurs in the throats. For imbibition, the 
ranking would increase with size, so that as in ( 2 )  the smallest rank wodd correspond 
to  the largest force, while in drainage the ranking would decrease with size because 
here motion is more likely when there is less capillary (resisting) pressure. The 
simulation is indifferent to  which fluid wets the matrix, and for convenience, we shall 
continue to refer to  the displacing fluid as water and the displaced fluid as oil. Most 
of the pore-space volume is in the pores, and so we count the amount of oil present as 
those nodes occupied by oil. We also make the simplifying assumption that all pores 
have equal volume, although we could easily incorporate a variable pore volume. 
Following conventional petroleum terminology, we shall refer to the volume fraction 
of displaced fluid phase remaining after a displacement process as residual saturation. 

The simulation process is carried out by computer as follows. Starting from an  
initial interface a t  one end of the lattice, ranks are assigned to all throats on the 
interface. The lowest-rank throat is selected, water displaces oil in the appropriate 
pore, and throats are added or removed as required from the interface list. Ranks are 
assigned to the new throats, the lowest is again selected, and the process repeated. 
A possible sequence of interface positions is shown in figure 3. Residual or trapped oil 
occurs when a region of oil-filled pores is surrounded by water (figure 4), because the 
fluids are incompressible and motion of an oil blob requires at  least two simultaneous 
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(e) 

FIQURE 3. A possible sequence of fluid motions: solid dots are oil-filled pores, open circlcs arc 
water-filled pores, light lines arc throats, and t,hc heavy line is the oil-water interface. 
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(Q) ( b )  

FIGURE 4. An example of oil trapping, before and after. 

steps - oil filling one pore and draining from an0ther.t After each step in the simu- 
lation, the interface is checked for trapped regions; these are stored and the relevant 
throats are removed from the interface list. Further explanation of the programming 
is given in $ 3. 

I n  practice, one chooses a lattice of some v, length and width (in number of pores) 
and lets water invade one end of the lattice while oil is driven out of the opposite end. 
On the remaining sides of the lattice, some boundary condition is imposed: perme- 
able, impermeable or, usually, periodic. The interface works its way from end to end, 
trapping oil regions as it goes, and the process stops when only residual oil remains. 
Note that since the motion always occurs through the one throat of highest ranking, 
only the sequence of numbers is significant. The actual shape of the pore-space size 
distribution is irrelevant, and it suffices to generate randomly a uniform probability 
distribution of ranks. 

The actual size distribution of the void space, while irrelevant for the motion, does 
enter into the computation of the amount of trapped oil. To the extent that the pores 
are much larger than the throats, the residual saturation of oil for any lattice will be 
simply proportional to  the number of oil-filled pores, and independent of the size 
distribution. I n  this manner, we assume essentially a factorization of residual satura- 
tion into a topological term and a volume term, and focus our attention on the 
topological term. 

The applicability of our results is limited by our strong initial assumptions. Since 
we allow fluid motion in only one throat a t  a time, we require that the lattice cannot 
be too large, and that the probability distribution of throat sizes is not too narrow. 
Ignorance of the details of interface motion preclude a precise estimate of a largest 
reasonable size, but i t  is clear that  the latter increases with C because the number of 
pore displacements per time interval should increase with flow rate. A further reason 
to  apply our results only to  very small C is the presence of large regions of trapped 
oil (see $4). Following the work of Melrose & Brandner (1974) and others, we expect 

t Realistically speaking, motions involving two pores a t  once are bound to occur since the 
total capillary force on the boundary of a trapped region is unlikely to be exactly zero, How- 
ever, the resultant force will tend to he small and randomly oriented, and we neglect the con- 
sequent slow motion of oil blobs. 
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large oil blobs to  be mobilized once the viscous pressure difference in the flow direc- 
tion exceeds the net capillary pressure, and for consistency we must assume C so 
small that  the largest trapped oil blobs remain immobile. 

3. Programming of the simulation 
We refer to  the computer program that models capillary displacement under the 

approximations described above as the simulation, and the porous medium in 
question as the bed. The bed consists of a finite regular array of pores, each of which 
is connected to its nearest neighbours by throats, and the number of nearest neighbours 
of each pore is the co-ordination number. Certain of the pores a t  one edge of the bed 
are connected to  a source that  supplies water, while those a t  the opposite edge are 
connected to a sink that  absorbs oil, and the pores a t  the sides are connected in such 
a way as to satisfy some boundary condition. I n  the usual case, the edges are con- 
nected to each other to form a cylindrical surface (periodic boundary conditions), but 
some results have been obtained with the sides connected to  the sink (corresponding 
to a permeable boundary condition) or unconnected (corresponding to an impermeable 
boundary condition). 

At any point in time during the simulation a set of pores containing oil will have 
one or more neighbours that contain water. If there is a path entirely in oil from such 
a pore to  the sink, it is said to be on the interface. Throats that have a t  one side a pore 
on the interface and a t  the other side water are also said to be on the interface. Pores 
containing oil for which there is no such path to  the interface are said to  be trapped, 
or to  contain residual oil. 

The simulation process proceeds as follows. 
(i) Create a regular bed of specified length, width, co-ordination number and 

boundary conditions. Assign to each throat a random ranking in the interval [ O ,  11. 
Initialize the list of pores on the interface to consist of those pores connected to  the 
source. 

Although this step is conceptually simple, some effort has gone into writing the 
code so a t  to  maximize the versatility of the simulation. Actually we have a family 
of simulations which use (mostly) common code and different control tables. The 
simulation can handle beds of two, three or higher dimensions. I n  this paper we pre- 
sent two-dimensional results only, deferring other cases to a future publication. The 
simulation can be run with any co-ordination number, with boundary conditions 
that are either ‘open’, ‘closed’ or ‘periodic ’, with arbitrary connections between 
source and sink, and (within processor space and time limitations) any size of bed. 

(ii) Choose one of the pores on the interface to be filled with water according to  
the criterion that water will flow through the lowest-ranking throat on the interface. 
This choice must be made a t  each step, hence on the order of N 2  times, where N is 
the number of pores on a side of a square bed. A brute-force approach involves 
searching the entire list of pores on the interface (which is of length a t  least order N )  
each time, and this approach therefore takes time proportional to  a t  least X3. More- 
sophisticated approaches involve sorting the pores by throat size as they are added 
to the interface, and these techniques can reduce the time per step to order log N .  

(iii) Add all of the nearest neighbours of the chosen pore which contain oil and are 
not already on the interface to the list of pores on the interface. Assign a throat 
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ranking a t  random to each new throat on the interface. If the pore to  be added is 
already on the interface list, and the new throat is of lower rank than the previous 
lowest-ranking throat connecting this pore to  the interface, remove the previous 
throat from the (sorted) interface list. Place the pore on the interface list according 
to the size of its lowest-ranking throat on the interface. 

The choice of the precise list structure is similar to the problems faced in the choice 
of structures for event lists in discrete time simulations (for a discussion of this 
problem see Knuth 1973; Vaucher & Duval 1975). I n  this case, ease of programming 
and relative timing led to the choice of an array of linear lists for this structure. 

(iv) Now determine if any of the pores on the list of pores on the interface are 
trapped. Remove each such pore (if any) from the list of pores on the interface. 

Determining which pores on the interface have become trapped is both conceptu- 
ally and computationally more complex. I n  the brute-force approach, where a path 
is traced from each pore on the interface to  the sink, the time required is of order 
N 2  a t  each step. Since there are N2 steps, this leads to  a time proportional to N4 for 
the complete simulation. More-sophisticated techniques make use of the fact that  
each step in a simulation with a co-ordination number u divides the bed into a t  most 
u - 1 disconnected regions containing oil. Each of these regions may be explored (by 
tracing the perimeter or spanning the volume for instance) in time proportional to N .  
This yields a simulation with time proportional to  N3.  

I n  two dimensions, tracing the perimeter is fast and simple since there is a natural 
ordering associated with throats on the interface (i.e. one can trace them in a clock- 
wise direction). I n  three dimensions, there is no such simple ordering, although an 
algorithm due to  Artzy, Frieder & Herman (1978) associates a digraph (directed 
graph) with the surface bounding a volume consisting of cubic volume elements in 
such a way that the surface can be easily traced. Expansion of this idea to volumes 
with connectivity other than simple-cubic appears non-trivial, however, so in order 
to  maintain a consistent technique for simulations involving various co-ordination 
numbers in two or three dimensions led to the choice of an area-spanning (in two 
dimensions) or volume-spanning (in three dimensions) method. 

Further time savings are made by using the fact that  most steps of the simulation 
involve no trapping of oil. Organizing the exploration of the u- 1 potentially dis- 
connected regions in a manner that quickly discovers that they are in fact connected 
limits the time spent in this step to  be proportional to the trapped oil discovered a t  
each step. A classical-breadth first search (where the search for connected neighbours 
close to the starting pore is done before search of further neighbours) meets this 
requirement. Thus the total time is proportional to  the amount of trapped oil. 
Running the simulation has shown that this is roughly proportional t o  N2. 

(v) If there are any pores left on the interface, return to step (ii) and repeat the 
procedure with the next-lowest-ranking throat. If there are no pores on the interface, 
the simulation is complete. 

4. Results and discussion 
Qualitative features 

Figure 5 shows a typical fluid-displacement process on a periodic 100 x 150rectangular 
lattice, showing the pores occupied by oil a t  intervals of 2500 steps. The black dots 
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are oil-filled pores, the throats have not been drawn, and the white region has been 
invaded by water. The key qualitative features to  note are the irregularity of the 
interface, and the relatively large regions of trapped oil. If one examines the process 
step by step there is an alternation of two kinds of motion: an almost-smooth 
advance of the interface through a pore or two in different locations, and a ‘fingering’ 
process in which the interface comes to a sequence of high-ranking t h o a t s  and runs 
through a long tortuous path of random orientation. Large trapped oil blobs result 
when a region is pinched off by long fingers. 

I n  figure 6 ,  we illustrate the effects of the boundary conditions on the sides of the 
lattice. I n  the first case the side boundaries are permeable, as is the oil end of the 
lattice, and the unsurprising result is that the sides are depleted of trapped oil. I n  
the second case the side boundaries are impermeable to flow, and there results an 
excess of trapped oil blobs pinned against the sides. The boundary regions extend 
surprisingly far into the interior of the lattice. These boundary regions have import- 
ant experimental implications, since the width of a typical core of Berea sandstone 
used in laboratory studies, where usually the sides of the core are rendered imperme- 
able by jacketing, is only about 100 pores. Our results indicate that laboratory case 
studies may seriously overestimate residual oil saturation a t  low C. We are not claim- 
ing that periodic boundary conditions are completely realistic, but rather that results 
from a jacketed core may not reflect the properties of a rock in situ in a reservoir. 

Lattice dependence of S 

For the remainder of this discussion we restrict ourselves to periodic boundary 
conditions on the sides, and ask how the volume fraction S of residual oil depends on 
the length L, width W and co-ordination number CT of the lattice. I n  figure 7, we plot 
the amount of trapped oil vus. row number (i.e. distance downstream) for a square 
lattice of width 50 and length 375, averaged over many runs. If  the regions a t  the 
ends are disregarded as unrepresentative of the bulk of the lattice, then we find a 
‘central plateau ’ whose height shows no significant length dependence. The origin 
of this behaviour may be seen in figure 8, which shows the result of one flow on this 
50 x 375 lattice: there is no evident systematic variation in the trapped oil blobs 
along the length. We infer that, once the length of the Iattice approximately exceeds 
the width, there is no longer any variation of S with length. This has been verified by 
repeating the simulations a t  fixed W but varying L. There is a clear dependence of 
S on the width of the lattice. I n  figure 9 we plot the oil saturation in the central 
plateau region of a rectangular lattice vs. the width of the lattice in number of pores. 
All of our data, for all lengths exceeding W ,  are nicely fitted by the equation 

S(  W )  = 1 - 0.95 W-O‘l’. (3) 
The data has the a priori surprising feature that S + 1 as W -+ CO, originating from 
the fact that  water forms fingers through oil and surrounds regions that increase in size 
with the width of the lattice, while the fingers themselves (which contribute to  water 
saturation) can remain a t  a narrow finite width. I n  view of our remarks at the end 
of 5 2 we do not regard this last result as directly relevant to  very wide lattices, or, for 
that  matter, to macroscopic oil reservoirs (which have the additional complicating 
feature of statistical inhomogeneity). Equally surprising is the observation that (3) 
holds for every value of (T we have examined. 
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FIGURE 5 .  Sequence of fluid displacements on a 100 x 150 lattice a t  intervals of 
2500 steps (water enters a t  left). 
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S (%) 

FIGURE 6. Residual saturation on a rectangular lattice with various boundary conditions and 
water entering a t  left : (a)  permeable and ( b )  impermeable top and bottom boundaries. 
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FIGURE 7. Residual saturation vs. distance downstream for a 50 x 375 lattice. 

5. Percolation theory 
Our aim in this section is to elucidate the manner in which constructs of percolation 

theory can be applied to the diphasic flow simulation described in earlier sections. 
The percolation problem was first stated by Rroadbent & Hammersley (1957), a good 
general review is provided by Shante & Kirkpatrick (1973), and two more recent 
articles that emphasize aspects of percolation relevant t'o us are Kirkpatrick (1979) 
and Lubensky (1979). 

Classical percolation 

We begin by describing the classical 'bond ' percolation problem. Consider an infinite 
regular lattice in which links are independently deleted at  random. Suppose that p 
is the probability that any given bond is present and 1 - p  the corresponding prob- 
ability that the bond is absent. At small values o fp  only a few bonds will be present 
and one expects these bonds to form small isolated clusters with no connected path 
of bonds traversing the lattice in any direction. In  contrast, at  values of p near 1 
most bonds will be present and there should be a 'percolating cluster' of bonds 
running across the lattice in any direction. The nature of the transition between 
these two regimes is given by the fundamental theorem of percolation : there exists 
a critical probability p c  such that for p < p c  there is no percolating cluster, while 
for p > p c  there is exactly one. The value ofpc depends on the co-ordination number 
(r of the lattice as well as the dimension d of the space, and Monte Carlo studies 
indicate that 

pc N d / ( d -  1)  CT. (4) 

The details of the transition at  p c  are typical of second-order phase transitions in 
statistical physics, as occur for example at  the Curie temperature in a ferromagnet. 
One thinks of the percolating regime above p c  as analogous to the spontaneously 
ordered magnetic phase that occurs in a ferromagnet below its critical temperature, 
and defines a 'percolation probability' P ( p )  that, is analogous to  the magnetization. 
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FIGURE 8. Example of a final s ta te  on a 50 x 375 lattice (water ent#ers a t  top). 
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S as a function of width (in number of pores) 

FIGURE 9. Residual oil saturation in the 'central plateau' 'us. lattice width (once 
the length exceeds the width). 

More precisely, P ( p )  is the probability that a given bond is contained in the perco- 
lating cluster. The fundamental theorem of percolation implies that P ( p )  is strictly 
zero below p c .  Just  a.bove p c ,  numerical and theoretical arguments prescribe a power- 
law behaviour for P ( p )  : 

P(P) G ( P - P # .  (5) 

While p c  and Po depend on the particular lattice in question, the so-called critical 
exponent /3 exhibits the remarkable property of universality: it depends only on the 
spatial dimension and is independent of the co-ordination number and other properties 
of the system. A similar behaviour occurs for a second quantity of interest, the 
correlation length. If we define g(r-r ' )  to  be the probability that points r and r' are 
connected by bonds, then, when the distance Ir-r'l is large a n d p  < p c ,  g behaves as 

(6) g(r - r')  ,., e-l+'-p'l/E 

which defines the correlation length [ ( p ) .  Near the critical point, asp --f p c ,  5 diverges 
with another universal critical exponent v :  

UP) ~ o l ~ - ~ c l - y .  (7) 

I n  two and three dimensions, numerical studies give v 2: 1.365 and 0.845 respectively. 
The intuitive reason for the existence of such universal critical-exponent scaling 

laws as ( 5 )  and ( 7 )  is that  near a critical point or phase transition the gross behaviour 
of the system is controlled by large-scale co-operative interactions. Suitably chosen 
bulk properties are insensitive to  fine-scale details of the system. The divergence of 
the correlation length a t  the critical point is a direct signal of this behaviour. 

Instead of having bonds present in the lattice with some probability p ,  one can 
instead consider 'site percolation', where any node has a given probability of being 
present, and connected clusters consist of nearest-neighbour nodes. Site and bond 
percolation are found to behave rather similarly: in both cases one finds scaling 
laws of the form ( 5 )  and ( 7 )  near the critical point a t  which a percolating cluster 
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FIGURE 10. Finite-size dependence of P ( z )  for a cubic lattice. Probability that a site belongs to a 
percolating cluster as function of bond fraction present, for different lattice sizes : circles represent 
10 x 10 x 10 samples, triangles represent: 20 x 20 x 20, squares represent 50 x 50 x 50, and 
diamonds represent 80 x 80 x 80. (Courtesy of Kirkpatrick 1979.) 

appears. The value ofp, is different for site and bond percolation on the same lattice, 
but the universal critical exponents p and v are the same. 

Finite-size scaling 

I n  practice one never deals with infinite systems, and it is necessary to consider the 
modifications to  the above picture when the lattice is finite. The fundamental theorem 
of percolation is no longer exact, and percolating clusters may exist even when 
p < p c .  However, the likelihood of finding a percolating cluster below p ,  decreases 
rapidly with the size of the sample, and (see figure 10) for moderate sizes the main 
effect is to append a tail to  P ( p )  below p,. More generally, i t  has long been known in 
the study of phase transitions that sharp (non-analytic) behaviour of physical 
quantities in the neighbourhood of a critical point is smoothed in finite samples. 

The effects of finite size in this context have been investigated by Fisher (1971), 
and we can reproduce the crux of his results by the following heuristic argument. 
If we use (7) to  eliminate lp-pcl in favour of the correlation length 6 ,  then from (5)  
the behaviour of the percolation probability P near the crit,ical point is 

p N f l - P ' y .  (8) 

Now suppose we have a sample of linear dimension N (measured in number of nodes). 
While in an  infinite sample 6 diverges near the critical point, from its definition (6) 
the correlation length cannot exceed the overall size of a finite sample. This suggests 
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the identification [/A’ = constant near the ‘smoothed’ critical point p c ( N ) ,  which 
leads to  

p N N-fi’e. (9) 

Fisher’s more detailed result is, for p near p c ,  

where F is an unknown function, together with a finite-size shift, in the apparent 
percolation threshold : 

If  we evaluate (10) a t  p = pc(Ar) ,  we obtain (9).  

pc(m)  - p c ( N )  N N-l’”. ( 1 1 )  

Percolation and the simulation 

Although the study of flow in random media was one of the original motivations for 
the invention of percolation theory (Broadbent & Hammersley 1957), the simulation 
described in earlier sections is evidently not the same as the classical percolation 
problem just reviewed. The former is a process consisting of a sequence of motions in 
which each step is determined by the results of the previous one, while the latter 
provides a static configuration which either does or does not contain a percolating 
cluster. There are also further subtle differences to  be noted below. Nevertheless, 
we shall argue that the final state of water produced in the simulation is qualitatively 
similar to a percolation cluster, and use this identification to analyse some of our 
results. 

We have found that, provided L > W ,  S is independent of L. (As has been noted 
earlier, end effects are excluded from this consideration.) I n  spite of the presence of 
significant water fingering in the intermediate stages of the simulation, on average 
the water front advances through the lattice in what is best described as a uniform 
mean flow. That is, the amount of residual oil is, on average over many realizations, 
simply proportional to the length, so the residual oil fraction is independent of L. 
The above remark implies that any block of finite length larger than W (excluding 
end regions) is representative of a ‘steady-state ’ distribution of residual oil. We note 
in passing that the observation that a steady state is achicved only when L is larger 
than order W also implies than in the limit of infinite FV no true steady state will 
appear. 

I n  the simulation, the probability that a given bond has a rank in the interval 
[x, x + dx] is just dx, since the ranks are assigned randomly in [0,1]. Suppose we con- 
sider just those bonds with ranks in the interval [ O ,  p c ]  ; these comprise a fraction 

dz = p c  so”’ 
of the bonds in the lattice, and the fundamental theorem of percolation ensures that 
this subset of bonds will form a percolating cluster. At any step in the simulation, the 
interface between oil and water regions must cross the percolating cluster (because the 
latter provides a path of bonds traversing the lattice in any direction). Therefore, a t  
the next step of the simulation there is guaranteed to be a bond with rank x < p r ,  
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(a )  hexagonal, cr = 6;  ( b )  rectangulor, (T = 4;  ( c )  triangular, CT = 3. 



266 R.  Chandler, J .  Koplik, K .  Lerman and J .  F .  Willemsen 

and so the bond chosen for the advance of the interface must lie in the percolating 
cluster. The motion of the interface thus selects only bonds whose rank lies in the 
interval [0 ,  p C ] .  

The evidence for the latter assertion is in figure 11, where we show histograms of 
the ranks selected for (T = 3,4 and 6 in one realization of the simulation. The percola- 
tion thresholds in the infinite-size limit for this case are a t  +, 8 and 3 respectively, 
and the curves approximately cut off a t  these points. The tails to the right are a 
mixture of two effects : a finite-size correction of the fundamental theorem given by 
( 1  l), and the inappropriate inclusion of the regions a t  the ends of the sample. 

The fact that  in figure 11 not all of the bonds with x < p c  have been filled with 
water reflects the difference between the simulation and pure percolation, namely 
that not all of the percolating cluster need fill with water. One reason is that in the 
simulation, when a region of oil is surrounded by water, no further activity takes 
place there, despite the fact that  some of the bonds in the interior may have rank 
x < pc .  A second discrepancy occurs when water fills two nearest-neighbour pores 
before the throat between them has filled. Motion will never occur in this throat 
thereafter, whatever its rank. 

Residual oil and Jinite-size scaling 
We are now in a position to  make theoretical contact with our numerical result (3).  
Recall that  S is the fraction of sites that contain oil a t  the end of the simulation, so 
it is the water fraction 1 - S that corresponds to  the percolating phase. We must 
consider finite-size percolation, where, since the sample length is irrelevant for 
L 2 W ,  the relevant linear size parameter is the width W .  Classical percolation then 
predicts 

l-S = AW-P", (12) 

where the universal critical exponent Plv = 0.11 in two dimensions, and the not- 
necessarily-universal coefficient A is unknown. We obtain qualitative agreement, in 
that our result for 1 - S is power-behaved with an exponent of 0-17. The sign of the 
discrepancy in the exponent is in accord with our remarks in the previous paragraph, 
in that the simulation should have less water than would be expected from the size 
of the classical percolating cluster. The observed universality of the constant A is a 
slight surprise, but consistent with approximate calculations which show that it is 
a weak function of (T. 

The fact that  the agreement between theory and (numerical) experiment is in- 
exact is not too surprising, given that the assumptions of the simulation correspond 
only roughly to those of percolation and we should expect only rough agreement. 
However, the threshold behaviour exhibited in figure 11 and the universal scaling 
form of (3) are characteristic of a wide class of phase-transition phenomena, and 
suggest that the simulation is indeed a t  a critical point. 

6. Summary of results 
We have studied two-dimensional capillary displacement by computer simula- 

tion, abstracting the essential features as a stepwise displacement process on a regular 
network of random-sized links. The simulation results in a moving interface charac- 
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terized by fingering a t  every scale, trapping clusters of residual oil. By counting the 
equally weighted nodes as the sole contributors towards fluid volume, we find that 
the steady-state residual oil saturation is independent of topology (as expressed by 
the co-ordination number) and depends only on the lattice size. Many features of the 
simulation, including this finite-size effect, are predictable from percolation theory 
and suggest that such displacement processes are indeed critical phenomena. Percola- 
tion theory will not describe all of the essential features of the displacement process; 
we have focused here on the volume fraction of residual oil. Nevertheless, the theory 
offers considerable guidance in extending our understanding of capillary displacement 
to large scale and three dimensions, where direct observation of the details of these 
processes is experimentally difficult. 

We thank R. Dashen for discussions which led us to  think about percolation, 
M. Gouilloud for inspiring this project, and M. E. Fisher. 
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